## **METALIZED POLYESTER FILM CAPACITORS**

## **MEF Series**

#### INTRODUCTION:

- ◆ MEF Series capacitor are constructed with metalized polyester film dielectric, copper-ply lead and epoxy resin coating.
- ♠ MEF Series capacitor are ideal for use in telecommunication equipment, data processing equipments, industrial instruments, automatic control system and other general electronic equipments.



- ◆ Non-indruction.
- Space-saving miniature size.
- Self-healing property.
- Good solder ability.
- igoplus High stability of temperature vs. cap. and  $an\delta$ .
- High density thermosetting epoxy resin enhance mechanical strength and humidity resistance
- ◆ Excellent result obtained from use in coupling by pass, R.F. Filtering and solidstate application...



### **OUTLINE DRAWING**



#### SPECIFICATION:

- 1. OPERATING TEMPERATURE:  $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$ .
- 2. VOLTAGE RANGE: 100, 250, 400 AND 630 VDC.
- 3. CAPACITANCE RANGE:  $0.01 \sim 10 \mu F$ .
- 4. DIELECTRIC STRENGTH: 150% of rated voltage for 1 minute at 25℃.
- **5. CAPACITANCE TOLERANCE**: ± 5% (J), ± 10% (K), ± 20% (M).
- 6. INSULATION RESISTANCE:
  - $C \le 0.33 \ \mu F \quad R \ge 9,000 \ M \Omega$ .
  - C > 0.33  $\mu$ F RC  $\geq$  3,000 M  $\Omega$   $\mu$ F.
- 7. DISSIPATION FACTOR: 1.0% max at 1 KHz, 25°C.
- MARKING: Capacitance, tolerance, rated voltage and Series code.

# **METALIZED POLYESTER FILM CAPACITORS**

## **MEF Series**

# DIMENSION:

| Capac | 2A ( 100 ) |      |      | VDC  | )    | 2             | E ( 2 | 250  | /DC) |      | 2G ( 400 VDC   |      |      |      | )    | ) 2J (            |      |      | 630 VDC ) |      |         |
|-------|------------|------|------|------|------|---------------|-------|------|------|------|----------------|------|------|------|------|-------------------|------|------|-----------|------|---------|
| Code  | μF         | W    | Н    | T    | Р    | ${\rm d}\phi$ | W     | Н    | Т    | Р    | ${\rm d} \phi$ | W    | Н    | T    | Р    | $\mathrm{d} \phi$ | W    | Н    | T         | Р    | $d\phi$ |
| 103   | 0.01       | 13.0 | 10.0 | 5.5  | 10.5 | 0.6           | 13.0  | 10.0 | 5.5  | 10.5 | 0.6            | 13.0 | 10.0 | 5.5  | 10.5 | 0.6               | 13.0 | 10.5 | 6.0       | 10.5 | 0.6     |
| 153   | 0.015      | 13.0 | 10.0 | 6.0  | 10.5 | 0.6           | 13.0  | 10.0 | 6.0  | 10.5 | 0.6            | 13.0 | 10.0 | 6.0  | 10.5 | 0.6               | 13.0 | 11.0 | 6.5       | 10.5 | 0.6     |
| 223   | 0.022      | 13.0 | 10.0 | 6.0  | 10.5 | 0.6           | 13.0  | 10.0 | 6.0  | 10.5 | 0.6            | 13.0 | 10.0 | 6.0  | 10.5 | 0.6               | 13.0 | 11.0 | 6.5       | 10.5 | 0.6     |
| 333   | 0.033      | 13.0 | 10.0 | 6.0  | 10.5 | 0.6           | 13.0  | 10.0 | 6.0  | 10.5 | 0.6            | 13.0 | 11.0 | 6.5  | 10.5 | 0.6               | 13.0 | 12.0 | 7.0       | 10.5 | 0.6     |
| 473   | 0.047      | 13.0 | 10.0 | 6.0  | 10.5 | 0.6           | 13.0  | 10.0 | 6.0  | 10.5 | 0.6            | 13.0 | 11.5 | 7.0  | 10.5 | 0.6               | 18.0 | 11.0 | 7.5       | 15.0 | 0.6     |
| 683   | 0.068      | 13.0 | 11.0 | 6.5  | 10.5 | 0.6           | 13.0  | 11.0 | 6.5  | 10.5 | 0.6            | 13.0 | 12.5 | 7.0  | 10.5 | 0.6               | 18.0 | 12.0 | 8.0       | 15.0 | 0.6     |
| 104   | 0.1        | 13.0 | 12.5 | 7.5  | 10.5 | 0.6           | 13.0  | 12.5 | 7.0  | 10.5 | 0.6            | 18.0 | 11.0 | 6.0  | 15.0 | 0.6               | 18.0 | 15.0 | 9.5       | 15.0 | 0.6     |
| 154   | 0.15       | 13.0 | 12.5 | 8.0  | 10.5 | 0.6           | 13.0  | 12.5 | 8.0  | 10.5 | 0.6            | 18.0 | 14.0 | 8.0  | 15.0 | 0.6               | 18.0 | 15.5 | 11.0      | 15.0 | 0.8     |
| 224   | 0.22       | 13.0 | 12.5 | 8.0  | 10.5 | 0.6           | 18.0  | 13.0 | 7.0  | 15.0 | 0.6            | 18.0 | 15.5 | 9.5  | 15.0 | 0.8               | 24.0 | 16.5 | 10.5      | 20.5 | 0.8     |
| 334   | 0.33       | 18.0 | 12.5 | 7.0  | 15.0 | 0.6           | 18.0  | 14.0 | 8.0  | 15.0 | 0.6            | 18.0 | 16.5 | 10.0 | 15.0 | 0.8               | 24.0 | 18.0 | 12.0      | 20.5 | 0.8     |
| 474   | 0.47       | 18.0 | 12.5 | 7.0  | 15.0 | 0.6           | 18.0  | 16.0 | 9.5  | 15.0 | 0.8            | 24.0 | 17.5 | 10.5 | 20.5 | 0.8               | 30.0 | 22.0 | 12.5      | 26.5 | 0.8     |
| 684   | 0.68       | 18.0 | 13.5 | 8.0  | 15.0 | 0.6           | 24.0  | 14.0 | 9.5  | 20.5 | 0.8            | 24.0 | 19.0 | 12.5 | 20.5 | 0.8               | 30.0 | 23.5 | 14.0      | 26.5 | 0.8     |
| 105   | 1.0        | 18.0 | 16.5 | 9.5  | 15.0 | 0.8           | 24.0  | 18.0 | 10.5 | 20.5 | 0.8            | 30.0 | 21.5 | 12.0 | 26.5 | 0.8               | 30.0 | 28.5 | 18.0      | 26.5 | 0.8     |
| 155   | 1.5        | 18.0 | 19.0 | 11.5 | 15.0 | 0.8           | 30.0  | 23.0 | 13.5 | 26.5 | 0.8            | 30.0 | 24.0 | 14.0 | 26.5 | 0.8               |      |      |           |      |         |
| 225   | 2.2        | 24.0 | 21.0 | 12.5 | 20.5 | 0.8           | 30.0  | 23.0 | 13.5 | 26.5 | 0.8            |      |      |      |      |                   |      |      |           |      |         |
| 335   | 3.3        | 24.0 | 22.0 | 13   | 20.5 | 0.8           | 30.0  | 24.0 | 16.5 | 26.5 | 0.8            |      |      |      |      |                   |      |      |           |      |         |
| 475   | 4.7        | 30.0 | 23.5 | 14   | 26.5 | 0.8           |       |      |      |      |                |      |      |      |      |                   |      |      |           |      |         |
| 685   | 6.8        | 30.0 | 24.0 | 15.5 | 26.5 | 0.8           |       |      |      |      |                |      |      |      | *    | Р                 | 10   | 5 15 | 5.0       | 20.5 | 26.5    |
| 106   | 10         | 30.0 | 26.0 | 21.5 | 26.5 | 0.8           |       |      |      |      |                |      |      |      |      | TOL               |      | 100  | 100       |      | ±2.0    |